Journal of Organometallic Chemistry, 108 (1976) 61-67 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STRUCTURAL STUDIES IN MAIN GROUP CHEMISTRY

XII*. THE VIBRATIONAL SPECTRA OF CYCLOPENTADIENYLTIN(IV) COMPOUNDS

61

PHILIP G. HARRISON** and JOHN A. RICHARDS

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (Great Britain)

(Received September 22nd, 1975)

Summary

The vibrational spectra of $Me_3SnC_5H_5$ and $(Me_3Sn)_2C_5H_4$ have been assigned in terms of the localised, σ -bonded structures inferred from electron diffraction data. The spectra of the product from the reaction of $(\eta^5 - C_5H_5)_2Sn^{II}$ and diiron enneacarbonyl, $[(C_5H_5)_2SnFe(CO)_4]_2$, is consistent with the presence of two inequivalent, *monohapto*-cyclopentadienyl rings bonded to each tin atom.

In our studies of cyclopentadienyltin(II) compounds [2], it has been apparent that, during the course of some reactions involving these compounds, the mode of bonding of the cyclopentadienyl rings to the tin changes drastically. The bonding phenomena of organotin(IV) cyclopentadienyl derivatives has been the subject of much investigation during the last few years because of the occurrence of facile metallotropic rearrangements. Electron diffraction data of both trimethylstannylcyclopentadiene [3] and bis(trimethylstannyl)cyclopentadiene [4] have been interpreted in terms of the *monohapto*-Me₃Sn- η^1 -C₅H₅ and (5,5-Me₃Sn)₂ (η^1 , η^1 -C₅H₄) structures, I and II, respectively, in which the trimethylstannyl groups are associated with just one of the ring carbon

* For Part XI see ref. 1.

** To whom correspondence should be addressed.

atoms. The best "fit" to the data was not, however, obtained with planar C_s rings but rather with puckered rings, in which the C(5) atom was somewhat out of the plane of the four olefinic ring carbon atoms. In sharp contrast to cyclopentadienyltin(IV) compounds, an electron diffraction study of dicyclopentadienyltin(II) [5] shows it to possess the angular sandwich pentahapto structure III, in which the tin is associated equally with all five ring carbon atoms. We have previously [6] measured the vibrational spectra of $(\eta^{5}-C_{5}H_{5})_{2}$ Sn and also

(田)

 $(\eta^{5}-\text{MeC}_{5}\text{H}_{4})_{2}$ Sn and have assigned them quite adequately on the basis of "local" C_{5v} and C_{2v} symmetry for the $C_{5}\text{H}_{5}$ and $\text{MeC}_{5}\text{H}_{4}$ groups, respectively. For a *pentahapto*-bonded cyclopentadienyl ring, only seven of the 24 normal vibrations of the $C_{5}\text{H}_{5}$ unit are active in the infrared, whereas any lowering of the symmetry to C_{s} causes all 24 modes to become infrared active. Thus, the nature of the metal—ring bonding in cyclopentadienyltin compounds should be quite apparent from a careful interpretation of the infrared spectrum. In this paper we report the vibrational spectra of the model compounds, Me₃SnC₅H₅ and (Me₃Sn)₂(C₅H₄), and apply the bonding criteria to a product of a reaction involving dicyclopentadienyltin(II).

Results and discussion

 $Me_3SnC_5H_5$ and $(Me_3Sn)_2(C_5H_4)$ were prepared by the stannylation of cyclopentadiene using Me_3SnNEt_3 in a 3:1 and 1:2 molar ratio of cyclopentadiene to stannylamine, respectively. The products were characterised by elemental analysis* and mass spectra, which are briefly reported in Tables 1 and 2 together with suggested assignments. Infrared and Raman spectra of $Me_3SnC_5H_5$ are presented in Table 3, together with those for $(C_5H_5)_2Hg$ [7], a generally accepted model monohapto-cyclopentadienylmetal derivative. The spectra are readily rationalised in terms of non-interacting Me_3Sn and C_5H_5 units, and additional Sn-C(5) stretching and C-Sn-C(5) angle deformation modes. The vibrations due to the methyl groups bonded to tin are easily identified at 2983, $\nu(CH)E_1$; 2919, $\nu(CH)A_1$; 1388, $\delta(CH)E_1$; 1189, $\delta(CH)A_1$; and 765, $\rho(CH_3)$ cm⁻¹. The two bands at 531 and 509 cm⁻¹ are assigned as the antisymmetric and symmetric tin-carbon(methyl) stretching vibrations, respectively, on the

* All compounds were analytically pure. Boiling points were: $Me_3SnC_5H_5$ 46° C/0.04 mmHg (lit. [9] 38° C/3 mmHg) and (Me_3Sn)₂(C_5H_4) 65° C/0.05 mmHg (lit. [9] 80° C/3 mmHg).

62

TABLE 1

MASS SPECTRAL DATA (70 eV) FOR Me ₃ SnC ₅ H ₅						
m/e	Relative intensity	Assignment				
229 214 199 184 164 149 134 119	20.5 16.6 2.0 46.7 100 11.8 18.0 13.2	$ \begin{array}{c} Me_{3}SnC_{5}H_{5}^{*} \\ Me_{2}SnC_{5}H_{5}^{*} \\ MeSnC_{5}H_{5}^{*} \\ SnC_{5}H_{5}^{*} \\ Me_{3}Sn^{+} \\ Me_{2}Sn^{+} \\ MeSn^{+} \\ Sn^{+} \\ \end{array} $				

basis of Raman polarisation data. Since all the normal vibrations associated with the cyclopentadienyl ring will be expected to occur above 600 cm^{-1} , the bands observed below 500 cm⁻¹ must be due to the Sn–C(5) stretching and C–Sn–C. angle deformation modes. The band at 332mw cm^{-1} in the infrared, which also occurs as a strong, polarised band in the Raman, is too high to be a skeletal deformation mode, and so is assigned as the Sn-C(5) stretching mode. The bands at 243, 186, and 144 cm⁻¹ are assigned as C-Sn-C angle deformation modes.

The remaining bands in the spectra also occur in the spectra of $(C_5H_5)_2$ Hg, and are therefore considered to be associated with the C_5H_5 fragment. The

TABLE 2

m/e	Relative intensity	Assignment			
Two-tin-co	ntaining fragments				
392	5.7	$(Me_3Sn)_2(C_5H_4)^+$			
377	15.0	Me ₃ SnC ₅ H ₄ SnMe ₂			
361	8.9	Me ₂ SnC ₅ H ₃ SnMe ₂	+		
347	11.3	Me ₂ SnC ₅ H ₄ SnMe ⁺			ji da serie
331	12.2	MeSnC ₅ H ₃ SnMe ⁺			
317	6.5	MeSnC ₅ H ₄ Sn ⁺	$ A_{i} = A_{$		
302	4.5	SnC ₅ H ₄ Sn ⁺			
281	3.1	MeSnCHSnMe ⁺			
275	0.3	SnC ₃ HSn ⁺		11	
267	0.7	MeSnCH ₂ Sn ⁺			
253	1.7	MeSn ₂ ⁺			
238	1.1	$\operatorname{Sn_2}^+$		- 1 1. 	
Mono-tin-c	ontaining fragments			2	
229	15.2	Me ₃ SnC ₅ H ₅ ⁺		in de la composition de la composition Na composition de la c	
213	12.7	Me2 SnC5 H4			
198	2.3	MeSnC ₅ H4 ⁺			
184	32.7	SnC ₅ H ₅ ⁺		1.1	
164	100	Me ₃ Sn [∓]		a polita	
149	8.7	Me ₂ Sn ⁺			
134	12.1	MeSn ⁺			
119	9.8	Sn ⁺			2월 20일 - 일

т	A	BLE	3	
	-		· ·	

VIBRATIONAL SPECTRA	(cm ⁻¹)	OF	Me ₃ SnC ₅	;H5
---------------------	---------------------	----	----------------------------------	-----

(C ₅ H ₅) ₂ Hg ^a		Me ₃ SnC ₅ H ₅	:	Assignment
Raman	Infrared	Raman	Infrared ^b	
	3090s	3100w (dp)	3101(sh)	ν(CH)
	3088s		3092ms	ν(C—H)
	3076(sh)	3066w (dp)	3078(sh)	ν(C—H)
	3040(sh)	3039w (dp)	3052w	ν(C-H)
	2970w			ν(C—H)
		2977w (br) (dp)) 2983vs	ν (C—H) E_1 , Me—Sn
		2911m (p)	2919vs	ν (C-H)A ₁ , Me-Sn
			2354w	
			2140w	
	1909		1929vw	Combination bands and overtones
	10000		1717w (br)	
	1630w		1697w (br)]
1530w	1530w		1616w (br)	ν (C=C)?
1445m				
1420m	1427m	1427w (dp)		
			1410w	
		1390w (dp)	1388m	δ (C-H)E ₁ , Me-Sn
1384m	1383m		1367mw	δ(C-H)
1300w	1296m		1300w	δ (C–H) + Ring def.
			1261vw	
1230w	1234m		1236w	δ (C—H) + Ring def.
		1198m (p)	1189s	δ (C–H)A ₁ , Me–Sn
			1132w	
1109m	1109m	1111w (p)	1116w	Ring def.
1080w	1084m	1085w (dp)	1087ms	δ(C—H)
1033w	1026m	1037w (dp)	1032m	<i>π</i> (C→H)
985w	988m		991m	δ(CC(5)H)
955w	957m	970w (dp)	973s	Ring def. + δ (C–H)
905w	907vs		915mw (sh)	δ(C-H)
874s	885vs	875w (dp)	873vs (br)	Ring def.
815s	822m	824w (p?)	825m (sh)	Ring def.
			765vvs	$\rho(CH_3), Me-Sn$
	748vs		735vs	π(CH)
	720w			
			665m	509 + 144
639s	646s	639m (p)	638s	δ(CH)
	575w		580vw	
		529m (dp)	531vs	ν (Sn-C) E_1
		508s (p)	509ms 379w	$\nu(\text{SnC})A_1$
		333s (p)	332mw	$\nu(Sn-C(5))$
		305w (p)		825-509 = 316?
		243w (p)		
		186w (dp)		
		144m (dp)) (3103)

a Ref. 7. ^b Liquid film.

assignments of the ring fundamentals are those given by Maslowsky and Nakamoto [7] for $(C_5H_5)_2$ Hg. Only four of the expected five ring C—H stretching modes are observed at 3101, 3092, 3078, and 3052 cm⁻¹, the fifth, which occurs at 2970 cm⁻¹ in $(C_5H_5)_2$ Hg, being masked by the strong C—H(methyl) stretching mode at 2983 cm⁻¹. The two predominantly C=C stretching modes of the ring occur at 1498 and 1590 cm⁻¹ in cyclopentadiene, but only a single

TABLE 4

Raman	Infrared a	Assignment	Raman	Infrared a	Assignment
	3092m (sh)	ν(CΗ)	1204w (p)	1190s	$\delta(C-II)A_1, Me-Sn$
	3081ms	ν(CH)		1133ms	
	3063m (sh)	ν(CH)	1123w (p)	1119m	Ring def.
· ·	2985s	ν (C-H)E ₁ , Me-Sn		1085	
2918w (p)	2919s	V(C-H)A1, Me-Sn		1063mw	δ(CH)
2895w (dp)	} .	_		1030ms	π(CH)
	2354w		971w (dp)	973vs	Ring def. + δ (C-H)
	2254vw			871m	Ring def.
	2184vw		841w (dp)	829m (sh)	Ring def.
	2086vw	Combination bands and overtones	790w (dp)	805s (sh)	
	2050vw			766vs (br)	$\rho(CH_3)$, Me-Sn
	1955vw (712vs	π(CH)
	1798vw			664sh	510 + 149
	1787vw			633m3 (sh)	δ(C-H)
	1713vw		533m (dp)	531vvs	$v(Sn-C)E_1$
	1692vw		517s (p)	510vs	$\nu(Sn-C)A_1$
	1630vw		389w (dp)	378vs	$\nu_{as}(Sn-C(5)-Sn)$
	1620vw (sh)	ν(C=C)?	341w (p?)	332vw	$\nu_{s}(Sn-C(5)-Sn)$
	1516vw	ν(C=C)	249m (p)		$\delta(C-C(5)-Sn)$
1415w (p)	1410s	δ(CH)	149w (dp)		$\int \delta(SnC_3)$
1388w (dp)	1386ms	δ (CH)E ₁ , MeSn			
	1367mw (sh)	δ(CH)			
·	1288vw	δ(C-H) + Ring def.			

VIBRATIONAL SPECTRA (cm⁻¹) OF (Me₃Sn)₂(C₅H₄)

a Liquid film.

weak band at 1530 cm⁻¹ assignable to these modes was observed in $(C_5H_5)_2$ Hg. In the present case, the spectrum is clear between 1600 and 1450 cm⁻¹, and only the weak broad band at 1616 cm⁻¹ may be assigned as a C=C stretching mode corresponding to the 1590 cm⁻¹ band in cyclopentadiene. Ring C—H in-plane (δ) (at 1440, 1367, 1087, 915, and 638 cm⁻¹) and out-of-plane (π) (at 1032 and 735 cm⁻¹) deformation modes, ring deformation (largely C—C stretching in character) modes (at 1116, 873 and 825 cm⁻¹), together with the bands attributable to coupling of these modes (at 1300, 1236 and 973 cm⁻¹) and C—C(5)—H angle deformation modes (at 991 cm⁻¹) all have their counterparts in the spectrum of $(C_5H_5)_2$ Hg, and need no further comment.

The infrared and Raman spectra of $(Me_3Sn)_2(C_5H_4)$ are listed in Table 4. Although the electron diffraction data for this compound have been interpreted solely in terms of the 5,5-isomer IIa, ¹H NMR data [8] show that the 5,5-isomer is in equilibrium with the 2,5-isomer IIb, the equilibrium lying strongly in favour

of the 5,5-it \cdots er. Thus, any attempt to assign the vibrational spectra of $(Me_3Sn)_2(C_5H_4)$ should allow for the possible observation of bands due to the 2,5-isomer IIb, although the spectra should be largely attributable to the 5,5-isomer IIa.

Not unexpectedly, the vibrational spectrum of $(Me_3Sn)_2(C_5H_4)$ is qualitatively similar to that of $Me_3SnC_5H_5$. Only one set of bands ascribable to vibrations of the Me_3Sn group is observed at 2985, $\nu(CH) E_1$; 2919, $\nu(CH) A_1$; 1386, $\delta(CH) E_1$; 1190, $\delta(CH) A_1$; 766, $\rho(CH_3)$; 531, $\nu(Sn-C) E_1$; and 510, $\nu(Sn-C) A_1$ cm⁻¹. The bands at 378vs and 332vw cm⁻¹ in the infrared are assigned as the antisymmetric and symmetric stretching vibrations of the Sn-C(5)-Sn three-atom linkage of the 5,5-isomer, IIa. The bands at 249 and 149 cm⁻¹, as in the spectra of $Me_3SnC_5H_5$, are ascribed to C-Sn-C angle deformation modes.

The introduction of a second Me₃Sn group should result in a decrease in the number of ring modes involving motion of the ring hydrogen atoms. Thus, whereas all three ring deformation modes observed in the spectrum of Me₃Sn-C₅H₅ are retained in the spectrum of (Me₃Sn)₂(C₅H₄) (at 1119, 871 and 829 cm⁻¹), only three C—H stretching modes are observed at 3092, 3081 and 3063 cm⁻¹, the fourth expected band as before being masked by the strong methyl C—H stretching mode at 2985 cm⁻¹. Similarly, only four ring δ (CH) modes are observed at 1410, 1367, 1063 and 633 cm⁻¹, the π (CH) modes occurring at 1030 and 712 cm⁻¹; and only two of the three bands due to coupling of δ (CH)

TABLE 5				
INFRARED	SPECTRUM (ci	m ⁻¹) OF	$[(C_5H_5)_2SnF]$	'e(CO)4]2 a

		Assignment			Assignment
3102(sh) 3082vw		ν(CH) ν(CH)	1027mw 1020ms	}	<i>π</i> (C-H)
3063vvw 2025vvs		ν(C—H) ν(CO)	999w 990w	}	δ(C-C(5)-H)
1985vvs 1963(sh)		v(CO)	969m 962mw (sh)	}	Ring def. + $\delta(C-H)$
1952(sh) 1937(sh)			914vs 903(sh)	}	δ(C-H)
1797vvw 1625w			890(sh) 877vvs	}	Ring def.
1535vw 1525mw	}	ν(C=C)	818s 749(sh)	١	Ring def.
1438ms 1429s	}	δ(С—Н)	742vvs 723vs	}	(C-H)
1361w		δ(CΗ)	639s	`	δ(С—Н)
1297vw 1290vw 1234w	}	δ (CH) + Ring def.	598vvs (br) 560s 537ms	}	(FeCO)
1220mw		δ(C-H) + Ring def.	505mw	í	
1123vvw	}		432s)	
1111vw 1104w	}	Ring def.	424(sh) 407w	}	ν(Fe-C)
1081vs		δ(CH)	309s 301ms (sh)	}	ν(Sn—C(5))

^a Nujol/halocarbon mull.

66

and ring deformation modes are preserved at 1288 and 973 cm⁻¹. The $\delta(C-C(5)-H)$ mode which occurred at 991 cm⁻¹ in Me₃SnC₅H₅ is also missing from the spectrum of (Me₃Sn)₂(C₅H₄). The two ring C=C stretching bands are observed as very weak features at 1516 and 1620 cm⁻¹, although the latter may be a combination band. Additional bands at 1133 and 805 cm⁻¹ are probably due to the presence of the 2,5 isomer.

Thus, the vibrational spectra of both $Me_3SnC_5H_5$ and $(Me_3Sn)_2(C_5H_4)$ are consistent with, and may be adequately interpreted in terms of, the monohapto, localised o-bonded structures deduced by electron-diffraction methods. For $Me_3SnC_5H_5$, nineteen of the expected 24 of the ring fundamentals have been observed, and hence the spectrum of this compound may be employed as a model for monohapto-cyclopentadienyl rings bonded to tin, as that of $(C_5H_5)_2$ Sn may be used as a model for pentahapto-bound species. As a test of this criterion, we have measured the infrared spectrum of the product of the reaction between $(\eta^{5}-C_{5}H_{5})_{2}$ Sn and diiron enneacarbonyl, which has the composition $[(C_{\xi}H_{\xi})_{2}SnFe(CO)_{\ell}]_{2}$. Preservation of the *pentahapto* bonding of $(\eta^5 - C_5 H_5)_2$ Sn during the reaction would give a relatively simple spectrum composed of the characteristic bands due to η^5 -C₅H₅ rings and Fe(CO)₄ groups. It is immediately apparent that the spectrum of $[(C_5H_5)_2SnFe(CO)_4]_2$ listed in Table 5, is far too complex to be consistent with an η^{5} -C₅H₅ structure, but, on close examination, not only are all the ring vibrations observed for $Me_3SnC_5H_5$ present, but the majority are duplicated. In addition, two Sn-C(5) stretching bands are observed at 301 and 309 cm⁻¹. Thus, it is apparent that not only has the mode of attachment of the cyclopentadienyl rings to the tin changed from *pentahapto* to *monohapto* during the reaction with diiron enneacarbonyl, but that in $[(C_5H_5)_2SnFe(CO)_4]_2$, the two monohapto-cyclopentadienyl rings are inequivalent.

Acknowledgement

We thank the S.R.C. for support in the form of an INSTANT Award (to J.A.R.).

References

- 1 P.G. Harrison and R.C. Phillips, J. Organometal. Chem., 99 (1975) 79.
- 2 P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc. Dalton, (1975) 2097.
- 3 N.N. Veniaminov, Y.A. Ustynyuk, N.V. Alekseev, I.A. Ronova and Y.T. Struchkov, Doklady Chem., 199 (1971) 577.
- 4 N.N. Veniaminov, Y.A. Ustynyuk, N.V. Alekseev, I.A. Ronova and Y.T. Struchkov, J. Struct. Chem. (USSR), 12 (1971) 879.
- 5 A. Almenningen, A. Haaland and T. Motzfeldt, J. Organometal. Chem., 7 (1967) 97.
- 6 P.G. Harrison and M.A. Healy, J. Organometal. Chem., 51 (1973) 113.
- 7 E. Maslowsky and K. Nakamoto, Inorg. Chem., 8 (1969) 1108.
- 8 Y.A. Ustynyuk, A.V. Kisin and A.A. Zenkin, J. Organometal. Chem., 37 (1972) 101.
- 9 I.M. Pribytlova, A.V. Kisin, Y.N. Luzikov, N.P. Makoveyeva, V.N. Torocheshnikov and Y.A. Ustynyuk, J. Organometal. Chem., 30 (1971) C57.